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Abstract 

Internet timekeeping has come a long way since first demonstrated almost two decades ago. In 
that era most computer clocks were driven by the power grid and wandered several seconds per 
day relative to UTC. As computers and the Internet became ever faster, hardware and software 
synchronization technology became much more sophisticated. The Network Time Protocol 
(NTP) evolved over four versions with ever better accuracy now limited only by the underlying 
computer hardware clock and adjustment mechanism. 

The clock frequency in modern workstations is stabilized by an uncompensated quartz or surface 
acoustic wave (SAW) resonator, which are sensitive to temperature, power supply and component 
variations. Using NTP and traditional Unix kernels, incidental timing errors with an uncompen- 
sated clock oscillator is in the order of a few hundred microseconds relative to a precision 
source. Using new kernel software described in this paper, much better performance can be 
achieved. Experiments described in this paper demonstrate that errors with a modern worksta- 
tion and uncompensated clock oscillator are in the order of a microsecond relative to a GPS 
receiver or other precision timing source. 

1. INTRODUCTION 
Several years ago the software algorithms to discipline the Unix system clock were overhauled to provide 
improved accuracy, stability, and resolution [SI. In addition, means were added to discipline the clock 
directly from a precision timing source, such as a GPS receiver or cesium oscillator. The software was inte- 
grated with several operating system kernels of the day and eventually adopted as standard in Digital 
Tru64 (Alpha), Sun Solaris, Linux,and FreeBSD. The best performance achieved with workstations of the 
day was a few hundred microseconds in time and a few parts-per-million (PPM) in frequency, so a clock 
resolution of one microsecond seemed completely adequate. 

With workstations and networks of today reaching speeds in the gigahertz range, it is clear the solution of 
several years ago is rapidly becoming obsolete. Improved modelling techniques have resulted in better dis- 
cipline algorithms which are more responsive to phase and frequency characteristics of computer clocks 
[3]. Faster processors and a standardized application program interface (API) allow more flexible and pre- 
cise timing of external signals [7].  Faster network speeds and lower jitter provide more accurate timekeep- 
ing over the Internet 1141. 
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This paper describes new algorithms and kernel software providing much improved time and frequency 
resolution, together with a more agile and precise clock discipline mechanism. It discusses the analysis and 
design of the algorithms and the results of proof-of-performance experiments. The software has been 
implemented and tested in all the kernels mentioned above and is now standard in the Linux and FreeBSD 
public distributions. 

The kernel software replaces the clock discipline algorithm in a synchronization daemon, such as the Net- 
work Time Protocol [6], with equivalent functionality in the kernel. It provides a resolution of 1 ns in time 
and .001 PPM in frequency. While clock corrections are recomputed about once per minute in the daemon, 
they are recomputed once per second and amortized at every tick interrupt in the kernel. This avoids errors 
that accumulate between updates due to the intrinsic hardware clock frequency error. 

The new software can be compiled for 64-bit machines using native instructions or for 32-bit machines 
using a macro package for double precision arithmetic. The software can be compiled for kernels where 
the time variable is represented in seconds and nanoseconds and for kernels in which this variable is repre- 
sented in seconds and microseconds. In either case the resolution of the clock is limited only by the resolu- 
tion of the clock hardware. Even if the resolution is only to the microsecond, the software provides 
extensive signal grooming and averaging to minimize reading errors. 

The remaining sections of this paper are organized as follows. Section 2 describes the characteristics of 
typical computer clock oscillators, which are based on the Allan deviation statistic used in the most recent 
NTP algorithms. Section 3 describes the software design, which is based on two interacting hybrid phase- 
locklfrequency-lock (PLLFLL) feedback loops. Section 4 describes the software implementation, which is 
integrated in the kernels mentioned above. Section 5 summarizes the results of proof-of-performance 
experiments which validate the claims in this paper. Section 6 concludes with suggestions for further 
improvements. 

, 

2. COMPUTER CLOCK CHARACTERIZATION 

In order to understand how the new kernel algorithms operate, it is necessary to understand the design of a 

any other protocol that provides periodic offset measurements, depends strongly on the stability of the 
clock oscillator and the precision of its adjustment mechanism. The clock frequency in modern worksta- 
tions is stabilized by an uncompensated quartz or surface acoustic wave (SAW) resonator, which is 
affected by temperature, power supply and component variations. The most significant affect is the tem- 
perature dependency, which is typically in the order of one PPM in frequency per degree Celsius. 

In typical computer clock designs the clock oscillator drives a counter that produces processor interrupts at 
fixed tick intervals in the range 1-20 ms. At each tick interrupt a software clock variable is updated by the 
number of microseconds or nanoseconds in the tick interval. The means used by the traditional Unix kernel 
to adjust the clock time is the adj time ( ) kernel routine, which causes a fixed value, typically 5 ~ s ,  to be 
added to or subtracted from the clock time at each tick interrupt. Thead j time ( ) function computes how 
long these increments must be continued in order to amortize the adjustment specified. In order to provide 
a frequency offset, the NTP daemon calls the adj  time ( ) routine at intervals of one second. Since the 
intrinsic clock oscillator frequency error can range to several hundred PPM, this can result in sawtooth-like 
time errors ranging to several hundred microseconds. This was the prime motivation to avoid the ad j - 
time ( ) routine and implement the clock discipline directly in the kernel. 

Almost all modern processors provide means to measure intervals for benchmarking and profiling. These 
means typically take the form of a processor cycle counter (PCC), which can be read by a machine instruc- 
tion. Upon receiving a request to read the clock, the kernel uses the PCC to compute the number of micro- 
seconds or nanoseconds since the last tick interrupt. Since the PCC and clock oscillator may not run at the 

\ typical computer clock and how the time and frequency is controlled. The accuracy attainable with NTP, or 
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same frequency and, in the case of multiprocessor systems, there may be more than one PCC, the kernel 
must carefully mitigate the differences and develop a stable, monotonically increasing timescale. 

It is well known that the behavior of an oscillator can be characterized in terms of its Allan deviation, 
which is a function of stability, interpreted as first-order frequency differences, and averaging interval [ 11. 
In order to determine this statistic for a typical uncompensated computer oscillator, sample offsets relative 
to a cesium standard were measured with the computer oscillator allowed to free-run over periods ranging 
from 1.5 to 10 days. These data were saved in files and later used to construct plots in log-log coordinates 
showing stability versus averaging interval. 

In [3] a simple model is developed which characterizes the performance of each individual time server. 
The model characterizes each combination of synchronization source and clock oscillator by two intersect-- 
ing straight lines in log-log coordinates. In general, network and computer latency variations produce jitter, 
which is modelled as white phase noise and appears as a straight line with slope -1 on the plot. On the 
other hand, oscillator frequency variations produce wander, which is modelled as random-walk frequency 
noise and appears as a straight line with slope +0.5. The intersection of the two straight lines is called the 
Allan intercept, which serves to characterize the particular combination of source and oscillator. It repre- 
sents the optimum averaging interval for the best oscillator stability. If the averaging interval is less than 
this, errors due to source jitter dominate, while if greater, errors due to oscillator wander dominate. 

The averaging interval is roughly equal to the frequency time constant used in the clock discipline algo- 
rithm, and this is related to the interval between NTP poll messages sent across the network. With a mini- 
mum poll interval of 16 s in the current NTP design, the averaging interval is about 4,000 s, which is on the 
high side of the optimum range, and the match gets worse with larger poll intervals. Thus, the best accu- 
racy is achieved at the minimum poll interval, but this may result in unacceptable network overhead. 
Therefore, when the NTP daemon is started, it uses a relatively small poll interval in order to respond 
quickly to the particular oscillator frequency offset, then gradually increases the interval to an upper limit. 
Depending on desired accuracy and allowable network overhead, the upper limit could be a small as a few 
seconds or as large as a day or more. 

A phase-lock loop (PLL) functions best with poll intervals below the Allan intercept where jitter predomi- 
nates, while a frequency-lock loop (FLL) functions best above the intercept where wander predominates. 
As the result of previous research [2][3], a hybrid PLLFLL clock discipline algorithm has been designed, 
implemented,and tested in the NTP version 4 software for Unix, Windows,and VMS. A kernel implemen- 
tation based on this design is described in the following section. 

.I 

3. SOFTWARE DESIGN 
The nanokernel software design is based on the NTP implementation, but includes two separate but inter- 
locking feedback loops. The PLLFLL discipline operates with periodic updates produced by a synchroni- 
zation daemon such as NTP, while the PPS discipline operates with an external PPS signal and modified 
serial or parallel port driver. Both algorithms include grooming provisions that significantly reduce the 
impact of source selection jitter or clockhopping and network delay transients. In addition, the PPS algo- 
rithm can continue to discipline the clock frequency even if other synchronization sources or the daemon 
itself crash. 

3.1 PLL/FLL Discipline 
The PLLFLL kernel discipline is specially tailored for typical Internet delay jitter and clock oscillator 
wander. However, the kernel embodiment provides better accuracy and stability than the NTP discipline, 
as well as a wider operating range. Both the kernel discipline and NTP discipline operate in the same man- 
ner except for one important detail. The NTP discipline uses the kernel adj t i m e  ( ) system call, which 
has an inherent resolution of 1 ps in time and 5 PPM in frequency and amortizes adjustments once every 
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second. The kernel discipline has an inherent resolution of 1 ns in time and .001 PPM in frequency and 
amortizes adjustments at every tick interrupt. 

B 0th the kernel discipline and NTP discipline operate 
as a hybrid of phase-lock and frequency-lock feed- 
back loops. Figure 1 shows the functional compo- 
nents of the kernel discipline. In the NTP discipline 
the components below the dotted line are imple- 
mented in the daemon. The phase difference Vd 
between the reference source 0,. and clock 0, is deter- 

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I  

Figure * 'lock Feedback 

mined by the NTP daemon. The value is then- 
groomed by the NTP clock filter and related algorithms to produce the phase update V, used by the loop 
filter in the kernel to produce the phase predictionx and frequency prediction y. These predictions are used 
to produce clock adjustment updates at intervals of 1 s which result in the correction term V,. This value 
represents the increment in time necessary to correct the clock at the end of the next second. The various 
performance data displayed later were derived from the phase update V,, since this is a common measuring 
point for both the daemon and kernel. 

The x and y predictions are developed from the phase 
update V, as shown in Figure 2. As in the NTP algo- 
rithm, the phase and frequency are disciplined sepa- 
rately in both PLL and FLL modes. In both modesx is 
the value V,, but the actual phase adjustment is calcu- 
lated by the clock adjust process using an exponential 
average with an adjustable weight factor. The weight 
factor is calculated as the reciprocal of the time con- 
stant specified by the API. The value can range from 
1 s to an upper limit determined by the Allan intercept. In PLL mode it is important for the best stability 
that the update interval does not significantly exceed the time constant for an extended period. 

In PLL mode, y is computed using an integration process as required by PLL engineering principles; how- 
ever, the integration gain is reduced by the square of the time constant, so adjustments become essentially 
ineffective with poll intervals above 1024 s. In FLL mode, y is computed directly using an exponential 
average with weight 0.25. This value, which was determined from simulation with real and synthetic data, 
is a compromise between rapid frequency adaptation and adequate glitch suppression. In operation, PLL 
mode is preferred at small update intervals and time constants, and FLL mode at large intervals and time 
constants. The optimum crossover point between the PLL and FLL modes, as determined by simulation 
and analysis, is the Allan intercept. As a compromise, the PLLFLL algorithm operates in PLL mode for 
update intervals of 256 s and smaller and in FLL mode for intervals of 1024 s and larger. Between 256 s 
and 1024 s the mode is specified by the API. 

Y 

Figure 2. FLL/pLL Prediction Functions 

* 

' 

3.2 PPS Discipline 
In order to reduce incidental errors to the lowest practical value, it is necessary to use a precision source, 
such as a GPS receiver or precision oscillator. The kernels mentioned above have been modified for this 
purpose. For serial drivers the PPS signal is connected to the DCD pin via a level converter; for parallel 
drivers the signal is connected directly to the ACK pin. A comprehensive API has been designed and 
implemented for this function. It is currently the subject of a Internet Engineering Task Force proposed 
standard [7] .  
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d X  
The PPS algorithm shown in Figure 3 is functionally 
separate from the PLLFLL discipline; however, the 
two disciplines have interlocking control functions 

as necessary. The PPS discipline is called at each PPS 
on-time signal transition with arguments including a 
clock timestamp and a virtual nanosecond counter 
sample. The virtual counter can be implemented using 
the PCC in modem computer architectures or a dedicated counter in older architectures. The intent of the 
design is to discipline the clock phase using the timestamp and the clock frequency using the virtual 
counter. This makes it possible, for example, to stabilize the clock frequency using a precision PPS source,- 
while using an external time source, such as a radio or satellite clock or even another time server, to disci- 
pline the phase. With frequency reliably disciplined, the interval between updates from the external source 
can be greatly increased. Also, should the external source fail, the clock will continue to provide accurate 
time limited only by the accuracy of the precision source. 

At each PPS on-time transitional the offset in the second is determined relative to the clock phase. A range 
gate rejects errors more than 500 ps from the nominal interval of 1 s, while a frequency discriminator 
rejects errors more than 500 PPM from the nominal frequency of 1 Hz; however, the design tolerates occa- 
sional dropouts and rejects noise spikes. The virtual counter samples are processed by an ambiguity 
resolver that corrects for counter rollover and certain anomalies when a tick interrupt occurs in the vicinity 
of the second rollover or when the PPS interrupt occurs while processing a tick interrupt. The latter appears 
to be a feature of at least some Unix kernels which rank the serial port interrupt priority above the tick 
interrupt priority. 

PPS samples are then processed by a 3-stage shift register. The median value of these samples is the raw 
phase signal and the maximum difference between them is the raw jitter signal. The PPS phase correction 
is computed as the exponential average of the raw phase with weight equal to the reciprocal of the calibra- 
tion interval described below. In addition, a jitter statistic is computed as the exponential average of the 
raw jitter with weight 0.25 and reported as the jitter value in the API. Occasional electrical transients due to 
light switches, air conditioners,and water pumps are a principal hazard to PPS discipline performance. A 
spike (popcorn) suppressor rejects phase out1 iers with amplitude greater than 4 times the jitter statistic. 
This value, as well as the jitter averaging weight, was determined by simulation with real and synthetic 
PPS signals. 

The PPS frequency is computed directly from the difference between the virtual counter values at the 
beginning and end of the calibration interval, which varies from 4 s to a maximum specified by the API. 
When the system is first started, the clock oscillator frequency error can be quite large, in some cases 200 
PPM or more. In order to avoid ambiguities, the counter differences must not exceed the tick interval, 
which can be less than a millisecond in some kernels. The choice of minimum calibration interval of 4 s 
insures that the differences remain valid for frequency errors up to 250 PPM with a 1-ms tick interval. 

The actual PPS frequency is calculated by dividing the virtual counter difference by the calibration interval 
in seconds. In order to avoid divide instructions and intricate residuals management, the calibration inter- 
val is always a power of 2, so division reduces to a shift. However, due to signal dropouts or noise spikes, 
either the length may not be a power of 2 or the signal may appear outside the valid frequency range, so the 
interval is ignored. The required frequency adjustment is computed and clamped not to exceed 100 PPM. 
This acts as a damper in case of abrupt changes that can occur at reboot, for example. 

PPS 

designed to provide seamless switching between them 4 Y  

Figure 3. PPS Discipline 

* 
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4. SOFTWARE IMPLEMENTATION AND OPERATION 
Figure 4 shows the general organization of the kernel 
software. Updates produced by the NTP daemon are 
processed by the hardupdate ( ) routine, while 

pps ( ) routine. The values in both routines are calcu- 
lated using extended precision arithmetic to preserve 
nanosecond resolution and avoid overflows over the 
range of clock oscillator frequencies from 50 Hz to 
above 1000 Hz. The actual corrections are redetermined once per second and linearly amortized over the . 
second at each hardware tick interrupt. In contrast to the NTP daemon, where most computations use float- 
ing-double data types, the kernel is limited to integer data types. 

Both the hardupdate ( ) and hardpps ( ) routines discipline the computer clock in nanoseconds in 
time and nanoseconds per second in frequency. There are two programs which implement the kernel algo- 
rithms, ktime. c and micro. c. The ktime. c program includes code fragments that implement the 
hardupdate ( ) and hardpps ( ) routines, as well as the ntp-gettime ( ) and ntp-adj time ( 1 
system calls that implement the API. The micro. c program implements a nanosecond clock using the 
tick interrupt augmented by the virtual counter described above. In its present form, it can be compiled 
only for 64-bit architectures. In this program the nano-t ime ( ) routine measures the intrinsic processor 
clock frequency, then interpolates the nanoseconds be scaling the PCC to one second in nanoseconds. The 
unavoidable divide instruction is the only one in the nanokernel software. The routine also supports a 
microsecond clock for legacy purposes. 

Since the PPS signal is inherently ambiguous, the seconds numbering is established by another NTP server 
or a local radio clock using the PLL/FLL discipline. The PPS frequency determination is independent of 
any other means to discipline the clock frequency and operates continuously. When the NTP daemon rec- 
ognizes from the API that the PPS frequency has settled down, it switches the clock frequency discipline to 
the PPS signal, but continues to discipline the clock phase using the PLLFLL algorithm. The sometimes 

given in the software documentation [8]. 

+ K a t *  

+ E r u p t  
PPS signal interrupts are processed by the hard- 

Interrupt Ovemow 

Figure 4. Kernel Clock Discipline 

* intricate mitigation rules that control the detailed sequencing are beyond the scope of this paper; they are 

5. PERFORMANCE EVALUATION 
Following previous practice [3], the ktime . c and micro. c routines have been embedded in a special 
purpose, discrete event simulator. In this context it is possible to verify correct operation over a wide range 
of operating conditions likely to be found in current and future computer systems and networks and which 
cannot be easily duplicated with in-situ implementations. It operates with internally synthesized data or 
raw data files produced by the NTP daemon during regular operation. For this purpose raw time offsets are 
recorded with NTP operating in an open-loop configuration and later played back to the simulator. Syn- 
thetic data having similar statistics are generated as described in [3]. The simulator can measure the 
response to time and frequency transients, monitor for unexpected interactions between the simulated 
clock oscillator, PCC and PPS signals, and verify correct monotonic behavior as the various counters inter- 
act due to small frequency variations. 

In order to calibrate the performance of the routines in a functioning system, they were implemented in the 
kernels for several architectures, including Alpha, Intel,and SPARC. Detailed performance data have been 
collected for three systems: Rackety is a busy SPARC IPC time server running SunOS 4.1.3 and connected 
to four radio clocks - dual redundant GPS receivers and dual redundant WWVB receivers. The PPS signal 
is derived from one of the GPS receivers. Churchy is a Digital Alpha 433au personal workstation running 
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cies. The interesting thing about this figure is that the 
jitter spikes are as often positive as negative. If due 

than a microsecond. 

rupt load produced by the multiplexor and network g-Ioo 

set spikes shown in Figure 6 are clearly the result of 

interface is severe, especially since the SPARC IPC is 
only a 25-MHz machine. The large negative time off- 

Time (hr) 

Figure 5. Time Offset for Hepzibah 

5 

Figure 7 shows the typical behavior for churchy, the 
fastest machine of the bunch. The PCC for this 
machine is derived from a SAW oscillator. Ordinarily, 
one would expect low phase noise from this type of 
oscillator, but the characteristics shown in the figure 
argue otherwise. To the trained eye, the characteristic $ 
is dominated by flicker noise. The source of this 
unexpected behavior is yet to be determined. 

30 

20 

I O  

6. CONCLUSIONS 
This paper demonstrates that modern computers can 
maintain nominal accuracy relative to precision time 
sources of a microsecond or two, assuming system- 
atic latencies due to signal conditioning, interrupt 
processing, and timestamp capture can be calibrated 
out. In order to achieve this level of performance, a 

Time (hr) 

Figure 7. Time Offset for Churchy 
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hybrid PLL/FLL discipline loop is used for NTP control together with separate time and frequency loops 
for PPS discipline. The level of performance is probably near the best that can be achieved with an unstabi- 
lized clock oscillator. Where a fast computer with precision hardware clock is available, the performance 
can be improved to the order of a few tens of nanoseconds at the API. This was verified using a machine 
where the system clock was derived from a rubidium oscillator and FPGA counter; however, this setup 
would not ordinarily be considered practical. The practical accuracy expectations of individual applica- 
tions will vary depending on the mix of applications and operating system scheduling latencies. 

Observations of the kernel disciplines in actual operation suggest a few areas where further improvements 
may be possible. One of these is the grooming algorithm used in the PPS discipline. The complexity of the 
median calculation increases rapidly with the number of register stages, which is only three in the current 
design. However, the NTP discipline operates in user space, so its resource commitments are more flexi- 
ble. The NTP daemon includes a PPS driver with a 60-stage register. The algorithm sorts the offsets, then 
iteratively trims off the sample furthest from the median until a prespecified fraction of the original Sam- 
ples are left. Finally, it presents the average of these samples to the kernel PLLFLL discipline. 

The PPS driver provides significantly less jitter than the kernel PPS discipline; however, the performance 
advantage due to the quick response of the kernel discipline is lost. While the current minimum daemon 
update interval is currently limited to 16 s in the interest of minimizing kernel overhead, it might be accept- 
able in fast machines to reduce that interval to 1 s. Should this be done, it would be practical to do almost 
all discipline loop processing in user space and move the per-second processing to the daemon, where 
more flexible processor and memory resource commitments are possible. 
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